Britain’s new Labour government has said small nuclear plants will play an important role in helping the country meet its net-zero targets.
Britain’s Office of Nuclear Regulation (ONR) said the Rolls-Royce SMR 470 megawatt (MW) Small Modular Reactor (SMR) design had completed stage two of its three-step generic design assessment (GDA) – the formal process for approving a new reactor.
“The team will move directly into Step 3 of this rigorous independent assessment of our technology – ideally positioning us to deliver low-carbon nuclear power and support the UK transition to net zero,” said Helena Perry, Rolls-Royce SMR’s Safety and Regulatory Affairs Director.
The overall duration for the Rolls-Royce SMR GDA is expected to be 53 months, reaching completion in August 2026.
A unique approach
According to Paul Stein, Chairman of Rolls-Royce SMR, “The UK SMR heralds a new approach to the cost of nuclear power by broadly rethinking the manufacturing and construction methods and by the extensive use of digital twinning, keeping the physics package exactly the same. The SMR uses a pressurised water reactor, a type we know and love.”
The production will utilize commercially available, off-the-shelf components from within the UK supply chain, injecting revenue into the British economy and avoiding high-risk, complex construction principles.
Organization for Economic Cooperation and Development (OECD)
The second volume of The NEA Small Modular Reactor Dashboard is another milestone in the ongoing efforts of the OECD Nuclear Energy Agency (NEA) to comprehensively assess the progress toward commercializing and deploying SMR technologies. It is important to note that the present publication is not an update to the complement of reactors assessed in Volume I. Instead, the work extends the same methodology to a further 21 SMR designs worldwide to evaluate their progress toward commercialization and deployment as of 21 April 2023.
Australia is a member of the OECD and has access to the publications of its Nuclear Energy Agency on SMR’s and would be aware that the widespread use of SMRs is underway.
Notable public announcements, even in the intervening months since NEA published Volume I in March 2023, now reflect technology choices and plans by chemical manufacturers, oil companies, and copper mine owners. Market signals suggest that this trend will only continue to accelerate as awareness grows about the potential for SMRs to provide alternatives to fossil fuels for both power and non-power industrial applications.
Nuclear Energy allows us to use the existing transmission lines and infrastructure, which is extremely important in Australia with a widely distributed, small population in a large country. The proposal submitted by the Liberal Party for replacing cold fire power stations with SMRs and larger-scale nuclear reactors utilizes the existing transmission lines so is a cost-efficient option.
Wind and Solar in remote locations means a whole new transmission infrastructure to get the power to where it is needed. Moreover, they only work when the wind blows and the sun shines, so the power output is unreliable.
Blocking nuclear is a major setback for Australia’s industrial sector. In the past with our own coal and natural gas Australia provided industry with comparatively cheap energy that will change dramatically without nuclear. Also, Australia has the world’s largest economic demonstrated resources of uranium. In 2021, it was the world’s 4th largest uranium producer. However, Australia has only one commercial nuclear power plant therefore, it has limited domestic uranium requirements. It has and will continue to provide excellent export income.
